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1. Introduction

- The most fundamental problem in the entire theory of os7U-

lations is to describe the motion of a mass point, the tip ra

attached to a spring. Within the classical theory of particle

mechanics, the spring is regarded as massless, so that it serves

only to transmit a force to the tip mass. This force typically C

depends on the position and velocity of the tip mass in perhaps a

nonlinear way. In this case, the motion is governed by an auto-

nomous ordinary differential equation. On the other hand, if the

spring has mass, then its motion as a continuum is coupled to that

of the tip mass. If the spring has a nonlinear constitutive equa-

tion, then the analysis of the resulting motion, governed by par-

tial differential equations, can be formidable indeed.

/-- this paper ,e--&t-udy. the motion of both tip mass and spring

when the mass density of the spring is small and when its consti-

tutive equation describes nonlinearly elastic and viscoelastic

materials. Although these constitutive equations do not account

for past history,-we neverthelesstprovet/that in the formal limit

as the spring's mass density goes to zero the equation for the tip

mass is an ordinary differential equation for elastic springs, but

is generally not so for viscoelastic springs. For the latter, it

Is typically an ordinary-functional dlfferential uation in which

the force law for the massless spring depends upon the1p ast histo-

ry of the motion of the tip mass. We furnish restrlctionsN the

material properties and initial conditions for the motion to be

governed by an ordinary differential equation in the usual form.

Although these restrictions are quite special, it is fortunate
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that they are often encountered in practice.

A rigorous asymptotic analysis of the full system of equa-

tions for non'inear.y ",iscoelastic sprIngs is carried out i.-_

It shows that the equations studied here constitute those for the

leading term of the regular expansion. The dissipative mechanism

associated with the viscoelasticity plays a crucial role in this

analysis. A comparable justification of the asymptotic status of

elastic springs is not possible. The full asymptotic analysis

relies on delicate estimates for quasilinear parabolic equations.

The mathematical tools used in the present paper are far less

esoteric. The novelty of our results lies not in the analysis,

but in the surprising structure of the equations and in the meth-

ods for manipulating them. Nevertheless, the finding of paradoxi-

cal behavior here would be-vacuous, were it not backed up by

rigorous analysis.

This paper has two goals: (I) to describe the surprisingly

complicated behavior of massless viscoelastic springs; (ii) tc

serve as the first step in a development (pushed much further in

[1]) of effective techniques for the treatment of the dynamics of

structures undergoing large motions and deformations.

Notation. We denote partial derivatives by subscripts and ordi-

nary derivatives by primes. To avoid ambiguities we carefully

distinguish between a function and its values. Thus the function

N. appearing in Section 3, is formally presented as

(1 1 (x,y) - N(x,y)e r.

Then N x(x,y) is its partial derivative with respect to its first

argument evaluated at (x,y). We denote by x-.N(x,y) or N(',y)
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the function of x obtained from N by fixing y. In our nota-

tion the term N(s,ws (s,t)) is unambiguously given by the :hi

ruleC as

(1.2) N x(S,w S(s,t)) + N y(sw S(S.t))wS (s~t).

Were we to follow the common practice of replacing the x In

(1.1) with s, then the meaning of N 5 (S,w6 (s,t))' would no longer

be clear.
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2. Formulation of the Governing Equations

We defiine a spring t be a one-dimensional solid ; w: -,s

cfigurat.;- in conf.ne. to a line. Since the treatment u-

vity or of other natural body forces offers neither challenge nor

insight, we take these forces to be zero. We may accordingly re-

gard the spring as confined to a straight smooth horizontal groove.

One end of the spring is fixed at a point taken to be the origin

of coordinates of a line along the groove. A particle of mass m

is attached to the other end of the spring.

The natural length of the spring is taken to be 2. We iden-

tify a typical material point of the spring with its distance s

from the fixed end in its natural state. In a motion of the

spring-mass system, at time t the material point s occupies

the position at distance s + w(s,t) from the fixed end. w(s,t)

is the displacement of s at time t. We require that

(2.1) w s(s,t) > -1, V S E [0,1], V t ;- 0

to ensure that the local ratio of deformed to natural length neler"

be reduced to zero. The requirement that the end s = 0 be fixed

is expressed by

(2.2) w(O,t) - 0.

We impose the initial condition

(2.3a,b) w(s,0) - w(s), wt(sO) * c(s) for s e [0,1].

Here t) and t are prescribed, continuously differentiable func-

tions on [0,1) with ,'(s) > -1 for all s : [0,1] for consis-

tency with (2.1) and with k(0) = 0 for consistency with (2.2).

Let -n(s,t) be the (component of the) contact force (along

5



the groove) exerted on the material of [s,l] by that of [O,s)

at time t. Let ,(s) denote the mass density of the spring per

unit reference length at s. t; is assumed to be twice cotin-

uously differentiable and positive on [0,1]. c is a small posi-

tive number. We assume that there are no externally applied forces

acting on the spring-mass system (since their treatment would be

routine). If w is sufficiently regular, the linear momentum

balance yields the Integral form of the equations of motion:

1

(2.4) -n(s,t) - JcP(k)wtt(kt)d +mw t(i.t),

S

from which we Immediately deduce the differential equation of

motion:

(2.5) CP(s)wtt(s,t) = ns(s,t)

and the boundary condition at s = 1:

(2.6) mw tt (1,t) - -n(l,t).

The properties of the material at s are specified by giving

the dependence of n(s,t) on the history of ws(s,.) up to time

t by means of a suitable constitutive functional. Most of our

Interest will be directed to viscoelastic sprinas of differential

type 1 whose constitutive equations are expressed in terms of

given constitutive functions

(2.7) [ 3 (xy,z) -. N(x,y,z) e F

by

(2.8) n(s,t) = N(s,w s(st),wst(st)).

(We systematically use the arguments introduced in (2.7) to Iden-

6



II

tify the various partial derivatives of N.) For contrast we

shall discuss elastic springs defined by (2.7), (2.8) with

(2.9) Nz  = 0.

To ensure that an increase in extension (strain) ws  for

fixed rate of strain w st be accompanied by a corresponding

increase in the tensile force, we require that

(2.10) Ny > 0.

To ensure that a total compression be accompanied by an infinite -P

compressive force and that an infinite extension be accompanied by 
4

an infinite tensile force we require that

(2.11) N (x, y, z) as yfo xe[,1

and for z bounded.

To ensure that all motions of viscoelastic springs are dissipative

we require that
(2.12) N z  const > 0.

For simplicity we assume that N is continuously differentiable

and that N(x,',.) is infinitely differentiable.

Assumption (2.12) implies that zo--N(x,y,z) has an inverse

(2.13) n o-. Z(xy,n).

It follows from (2.7) and (2.12) that

(2.14) Z(x,y,n) -4 ± as n - D ± ,

from (2.12) that

(2.15) Z > 0,

and from (2.10) and (2.15) that

76



(2.16) z < 0.y

Now let n = N(x,y,z) or, equivalently, z = Z(x,y,n). Suppcse

that y--1 or ', while n remains bounded. Then (2.11) and

(2.12) imply that z--+® or -a0, respectively. Thus (2.11) and

(2.12) also imply that

(2.17) Z(x,y,n) -- *- {QD a s y - ~

for n bounded.

The initial-boundary value problem for w is (2.2), (2.3),

(2.5), (2.6), .(2.8). The reduced problem corresponding to it,

obtained by setting c = 0 in these equations, is

(2.18) N(s,w (s,t),W st(s,t)) = N(1,ws (1,t),w st(l,t)),

(2.19) w(O,t) = 0,

(2.20) mwtt(1,t) + N(1,w s(1,t), wst (1,t)) = 0,

(2.21a,b) w(s,O) = ()(s), wt(1,0) = ,(1).

In (2.21) we retain only those initial data needed to ensure that

(2.18) - (2.21) has a unique solution for small time. For compa-

tibility of (2.19) and (2.21a,b) we require that o(O) = 0. More-

over, (2.18) and (2.21) yield

(2.22) N(s,w'(s)w at(s,O)) - N(1,w'(1),w 8 (1,0)),

which is equivalent to

(2.23) wst(s,O) - Z(s, '(s),N(l,w'(1),w t(1,0}}}.

Since (2.19) implies that

(2.24) wt (0,0) - 0,

we obtain from (2.23) that

8



S

(2.25) wt(sO) = Z(0' w'( ) N(1,w'(1) w ( ,0)) )de"
'0

There is no reason to expect this wt(.,0) to agree with i pre-

scribed in (2.3b). In fact, setting s = 1 in (2.25) and using

(2.21b) we obtain

(2.26) 1 = Z(k w'1 ) ,N(1(,()'(1 (1,0) )d ,

0

which we regard as an equation for wst(1,0) in terms of the ini-

tial data of (2.21). (Equation (2.26) can be uniquely solved for

wst(1,0), because the right side of (2.26) is a strictly increas-

ing function of wst (1,0) that ranges over (-w,m) with

wst(1,0).) This wst(1,0) need not agree with v'(1) of (2.3b).

Once wst(1,0) is found, we can substitute It into (2.23) to pro-

duce w st(S,O), which need not agree with v(s) of (2.3b).

Remark. Every three-dimensional interpretation of our variables

shows that it is reasonable to assume that N and rp are each

proportional to the cross-sectional area of the spring. Thus we

might be led to replace N with cN , with c interpreted as

the cross-sectional area. Such a parametrization would signifi-

cantly alter the character of our equations. To avoid confusion

on this question, it is helpful to regard the properties of the

spring, namely its density and constitutive function, as fixed and

to parametrize the problem by the magnitude of the tip mass. (In

our analysis the small parameter 6 should be interpreted as pro-

I
portional to the ratio of the total mass r[ 1.ds of the spring to

0

the mass m.)

9



A simple physical argument reinforces these remarks. Consi-

der the equili'!7 riim of a spring subject only to a constant end

load n(lt) Then the equilibrium version of (2.3) would-

imply that n(s,t) = I for all s. Thus no introduction of a

small parameter c through a constitutive equation In the form

(2.27). n(s,t) = cN (s,ws(st),W st(s,t))

could change the value of the tension n(s,t) (but of course any

change In X would do so). If (2.27) is used, then the depen-

dence of ws  on c, captured by an appropriate scaling, would

have to accommdate the weakening of the material. The scaling

used would have to depend on N . The adoption of (2.27) in our

problem would force us to confront the dynamical analog of this

difficulty. The analysis of [1] gives a precise standing to the

reduced problem (2.18) - (2.21); no attempt has been made to jus-

tify problems based on (2.27).

10



3. The Reduced Problem for Elastic Springs

We begin our study of the reduce problem in the .

ca se of elastic springs, which ha ;e constitutive equaations C: t:.. .

form (2.8) with N independent of its last argument: N 0.
z

The solutions of the reduced equations for elastic springs have

peculiarities not shared by those for other materials.

In view of (2.10), (2.11), N(x,.) has an inverse S

n-eY(x,n) e (-1,'). Let us assume that N(x,O) = 0 so that

Y(x,O) = 0. Then the reduced equation (2.14) subject to (2.9) is

equivalent to

(3.1) ws(s,t) = Y(s,N(l,ws(it)).

Our goal is to find an equation for w(1,.), which governs

the motion of the end mass, when w satisfies (3.1), (2.19) -

(2.21). Equation (2.20), which we rewrite as

(3.2) mwtt(1,t) + N(l,w s(1,t)) = 0,

is the natural place to seek such an equation, but is unsuitable

as it stands because w (1,t) is not related to w(l,-). We nows

obtain such a relation.

From (3.1) and (2.19) we obtain

(3.3) w(s,t) = [Y(Z,N(l,w s(1,t)))dt,
0

(3.4) w(1,t) = F Y(P,N(1,ws (l,t)))dt  J(w s(1,t)).

The properties of N show that J increases strictly from -1

to a as its argument increases from -1 to r. Thus (3.4) is

equivalent to

117



(3.5) w s(1,t) =- J- (w(l,t)).
S

The substitution of !?.5) into (3.2) yields an ordinry ir--

tial equation for w(1,'):

-1
(3.6) mwtt(1,t) + N(1,J (w(1,t))) = 0.

Initial conditions for w(l,.) are given by (2.21a).

Note that (3.4) implies that w(l,t) > -1. If the spring is

uniform, i.e., if N = 0, then J is just the identity. Thex

properties of w(l,.) are readily found by a phase-plane analysis

of (3.6). The phase portrait consists of closed orbits around the

origin. By substituting (3.5) into (3.3) we obtain w in terms

of w(l,.):

s

(3.7) w(s,t) = 0 Y(kN(1J- 1(w(lt))))dk
Jo

which reduces to

(3.8) w(s,t) = sw(1,t)

if the spring is uniform.

Note that in general w does not satisfy even (2.21a).

Equation (3.7) shows that (2.21a) holds if and only if

(3.9) W(s) = J Y(t'Nl1'J-1lwl1l )d9"
0

From (3.7) we obtain

(3.10) wt(s,O) = I(M) J jY( ,N(1,J- I (Y)))) (dt"

0

In the Initial state given by (3.9), (3.10) with &,(1) = 0, the

spring is at rest under the prescribed end displacement ,.(). Of

all initial configuration at rest, these, parameterized by (.,(1),

12



are the only ones that can be maintained with zero body force.

Note that for un.fcrm springs, we find from (3.8) that (3.9),

(3.10) reduce to

(3.11) (J(s) S(0(1), wt(s,O) = sW11,

which have particularly simple interpretations.

13



4. The Reduced Problem for Viscoelastic Springs

We now assume that N satisfies (2.12).

If the sprng i t:nif,:n, i.e., if N = 0, thenA we d..'

ately read off a solution to (2.18):

(4.1) ws (s,t) = ws (1,t).

It follows from (2.19) that

(4.2) w(s,t) = Ws(1,t)s, w(lt) = Ws(1,t), wt(1,t) =w st(1,t).

Substituting (4.2) into (2.20) we obtain the following ordinary

differential equation for the tip mass

(4.3) mwtt(1,t) + N(1,w(1,t),wt(1,t)) = 0.

In general, the solution (4.1) satisfies the initial condi-

tion (2.21a) if and only if

(4 .4) t)(s ) = (-Y(1)S . ,

The initial condition (2.21b) is discussed in the paragraph con-

taining (2.22). The interpretation of (4.4) is the same as that

for (3.9).

We now turn to the construction of a solution w of the

reduced problem when the spring is not uniform or when arbitrary

Initial conditions of the form (2.21) are imposed.

Let us set

(4.5) p(t) a N(l,w a(1ot),w st(1,t)).

Then (2.18) implies that

(4.6) w st(S,t) = Z(s,w s(st), ,(t)).

We rewrite (2.20) as

14
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(4.7) mwtt(1,t) + P~it) -0.

Frcmr (2. 19Q) we get

(4.8) w(1,t) w j w(s,t)ds
so that (4.6) yields

(4.9) wt(11t JZ(s~w s(s~t)iL(t))ds.

We now differentiate (4.9) with respect to t, use (4.7), rear-

range the resulting equation, and use (4.6) to obtain

V-(t)/M + JOZ YZdx

(4.10) V (t) a - 1________

J Z ds

where the arguments of Z,Z y Zn are s,w s(5,t),P.(t). Equations

(4.6) and (4.10) are a pair of ordinary differential equations for

t00ws(-,t),i(t). They are subject to the Initial conditions

(4.11a,b) w s(s,0) = ('(s) , i-(0) = N(1,e.)'(1) ,w s (110))

where w st(1,0) satisfies (2.26). In a completely standard way,

the Contraction Mapping Principle implies

4.12. Theorem. There is a number t + such (4,6), (4.10), (4.11)

has a unique, continuously differentiable solution (0,t )

t1-4 W 8(-,t), V(t) £L C 0([10, 1 ],(- I G) )XR .

Remark. Condition (2.12) ensures that (4.9) can be uniquely solved

for P)(t):

(4 13 (t - I* wS(* t , t I ) .

If we replace t. In (4.6) and (4.7) with (4.13) we obtain a

15



system of two first-order ordinary differential equations for

w (t) and w (I ,t) which can te used in place cf .
S t

(4.10) to jrodxce a the ,rerr analogUnis to 4.12. Note tha: -*".7

and Theorem 4.12 imply that wt , (1.) is continuously differen-

tiable on [O,t +).

Now let us regard (4.6) at an ordinary differential equation

for w (s,. ) when P Is regarded as given. Since Z(x,.,n) is

continuously differentiable, the continuation theory for ordinary

differential equations satisfying the Caratheodory conditions (cf.

E3, Chap. 2],[4,Sec.I.51) imply that on any interval [0,t++),

possibly containing [0,t+], on which P Is bounded (and measur-

able), equation (4.6) has a unique absolutely continuous solution

w(ss,.) satisfying (4.11a) as long as w9(s,.) is confined to

1-l,®1. Now the parameter s appears in the initial value prob-

lem (4.6), (4.11a) In the Initial datum w(s) and in the depen-

dence of Z on its first argument. By the continuous dependence

of solutions on the data (cf. [3, Theorem 2.4.2]) we find that w
s

depends continuously on s for t - [O,t + +  as long as w (s,.)s

stays In (-l~a). But condition (2.17) ensures that w (s,.)

cannot leae (-1,,) on [Olt)++  as a sketch of the slope field

(t,y)4-Z(s,y,P(t)) Immediately shows. Hence we conclude that

4.14. Proposition. On any interval [O,t ) on which P is

bounded (and measurable), problem (4,6), (4.11a) has a unique

solution wa(s,.) with w s continuous in s.

It then follows from (4.10) that L' must be continuous-on

such an interval. Let us combine (4.6) and (4.7) to obtain

(4.15) w at (8,t) - Zls'w 9 t)' - mwttlt)"

16



We can now invoke the continuous dependence of solutions on

the equation (cf. [5, Section 3.3]) to obtain

4.16 Theorem. On any interval [O,t + ) on whch -=mw

is bounded and measurable, it is continuous. On such an interval,

problem (4,13), (4.21a) has a unique continuously differentiable

solution ws(s,.) with the properties that ws(s,t) E (-1,w) for

0 S t < t, ws  depends continuously on s, and w s(s,t) depends

continuously on the restriction of wtt(l.) and thus of w(1,.)

to [O,t] for 0 s t < t++ . A fortiori, ws (1,t) and wst(l,t)

depend continuously 2n the past history of w(l,-).

We now find conditions ensuring that t = . Let

5.5 y

(4.17) E(x,y) - j N(x, ,O)dq.

0

Condition (2.10) ensures that E(x,.)" is strictly convex and

(2.11) that E(x,y)---. as y-. We strengthen (2.11) by requir-

ing that

(4.18) E(x,y) ----# 3 as y

Let us multiply (2.18) by w s(s,t) and use (4.5), (4,7),

(4.18) to write the resulting equation as

E (s,w S(s,t))wst (st)

(4.19) + [N(s,.wsl.t),.st(s't)) - N(sws(s't)e)Iwst(st)

- L(t)w st(s,t) - -mw t(,t)w St(s,t).

Integrating (4,19) with respect to s over (0,I] and using

(4.8) we obtain the energy eQuation

17



d w(1, t)2 + E(sw (S,t))dsT

0

The first term In the braces on the left side of (4.20) is the

kinetic energy of the tip mass and the second term is the poten-

tial energy of the spring. In the reduced problem, the spring has

no kinetic energy. Since the right side of (4.20) cannot be posi-

tive by (2.12) we obtain

(4.21) w (1, t)2 + E(sws(sit))ds C.
0

Here and below, C represents a positive constant independent of

t, depending only on the data of the problem. Thus for t 6

[O't++},

(4.22) Iwt(1,t)! 5 C, Iw(1,t)l S C(l+t).

Next

w(1,t) > -1 for t in any compact
(4.23) subinterval of [O,t++),

for If not, there would be a T e (Ot++) such that

I

(4.24) w(1,t) a Jo w(ot)ds\-1 as tAT.

Thus w (',t) would converge to -1 In measure as t/"T. But

this result contradicts (4.18) and (4.21).

Now we show that P1 cannot blow up in finite time. If

l(t)-.O as t-.t , then (2.18) and (4.5) would Imply that for

is



each s in [0,1]

(4.25) !L(st) -- or w §'at) - ' as -

as a consequence of (2.11), (2.12). But (4.8) would then imply

that

(4.26) w(l,t) ----# ® or wt(it) - w as t - ®

in contradiction to (4.22). If P (t)--*-4 as t-.t ++ . then ana-

logously for each s in [0,1]

(4.27ab) (st) - -1 or w (st) - - as t -- t .

stt

Now (4.27b) cannot hold on a set of postlive measure since it

would imply by (4.8) that wt(1,t)---o-a In violation of (4.22).

Thus (4.27a) would have to hold for almost all s In [0,1]

implying by (4.8) that w(1,t)--4-1 as t--+t. This result is

incompatible with (4.23) If t + + < O. Hence we have

4.29. Theorem. Let (4.18) hold. Then Theorems 4.12 and 4.16

hold with t = t+ +  a.

Theorem 4.16 says that w (l,t) depends on the past history5

of w (1,'). If this dependence is substituted into (2.20), we
5

might well get a functional-differential equation for the tip mass.

Could the abstraction (in the form of the contraction mapping prin-

ciple) underlying the proof of Theorem 4.16 obscure the possibili-

ty that w (1,t) might depends only on the present value w(1,t)?

What are the conditions for this to happen? I.e., what are the

conditions for the motion of the "end mass to be governed by an

ordinary differential equation? We address these questions in the

rest of this paper. We begin by studying an illuminating example.
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5. Example~ Linearly Viscot .astic Springs

We illustrate the results of Section 4 with the reduced '-

2ern fu- 2I .early .''ce*t springs 'fir which N' !'a t:'C

(5.1)N(x,z) - p(x)z + q(x)y

where p and q are positive and continuous on [0,1]. For this

linear law, presumably valid for small motions, it is inappropri-

ate and impossible to require that (2.11) hold.

Let

(5.2) r(x) - q(x)/p(x).

Then we can write (2.18) as

(5.3) [e r(s)t w (s,t)]I - p(l)p(s)l Ie r(s)r(l)]te r()t w(t

from which we ultimately obtain

(5.4a) w(l,t) -f(t) + aw 6 (1,t) I Jb(s)Ji r(s)(n-t)( 1 .1;? )dds

0 0

where

(5.4b) f(t) 10 e- r~~ () ) p(1)p(s)- I (j(1)]ds,

00

(5.4d) b(s) - p(1)p(s) Cr(s) - r(1)].

To convert (2.20) to an equation for w(1,') alone, we must

solve (5.4) for w a(1,t) in terms of w(1,-). If r Is constant,

then the solution Is immediate. Otherwise, observing that the

integral over (0,t) on the right side of (5.4a) is a convolu-

tion, we can accordingly solve It by the Laplace transform method

20
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to obtain
t

(5.5) Ws(wt) = [w(q,, )-f ( )]g( t-'? )dl!
s

where g is the inverse Laplace transform of

(5.6) a _[ _

0

In order for (2.20) to be an ordinary differential equation for

w(l,'), we must be able to express w (1,t) in terms of w(l,t).5

Since the solution (5.5) is unique, this possibility can occur if

and only if g is the Dirac delta, i.e., if and only if (5.6) Is

a constant function. This happens if and only if b = 0, i.e.,

if and only if r is a constant. (The constancy of r may be

regarded as a reflection of the proportionality of the moduli p

and q to a variable cross-sectional area of the spring.) Thus

if r is not constant, then the reduced equation for the tip mass

is that for a massless viscoelastic spring of memory type.

Even if r is constant, the resulting equation for w0(! ,'

is not autonomous unless the transient f = 0, i.e., unless , .(I)

- aw'(1). We can also determine conditions ensuring that the func-

tional differential equation (occurring when r Is not constant)

Is autonomous. A sufficient condition for f - 0 is that

(5.7) h(s) a c( s) - p(1)p(s)- 1W(1) - 0.

If r is monotone, (5.7) is also necessary. For if f - 0, then

all its derivatives vanish at 0:

r(1

(5.8) 0 1 ' r(s)kh(s)ds xkh(o(x))w(x)dx, k = ,1,...,

0 r(O)
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where a Is the Inverse of r. Since the monomials xk  are com-

plete (in L2, sax,), equation (5.7) follows.

The develcpment ercz.npassing (5.) - (5.4t) can 'e c : -"

for nonlinear constitutive functions of the form

(5.9) N(x,yz) = F(x,y)y z + r(x)F(x,y),

but such N's cannot satisfy (2.11). We find that if r is con-

stant, then the reduced equation for the end mass is an ordinary

differential equation. (We of course cannot apply the Laplace

transform to our nonlinear equation to effect a general solution

of the analog of (5.4).)
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6. Necessary Conditions for the Reduced Problem for the End Mass

to be Go'erned by an Ordinary Differential Eqiaticn

The results cf the last two sections suggest two q,:es .:-

about the behavior of the reduced problem for nonlinearly visco-

elastic springs:

1) What conditions on N ensure that the reduced problem

for the tip mass (generated by (2.20)) be governed by an ordinary

differential equation (possibly with a nonautonomous transient

term) for all initial data w,. (satisfying (2.26) at t = 0)?

ii) What conditions on N and the initial data ensure that

this problem Is governed by an autonomous ordinary differential

equation for all values of o(1),p(1)? (These data are those

appropriate for the motion of a mass point on a massless spring.)

We obtain necessary conditions, which can be used to show that such

ordinary differential equations cannot occur for most materials.

We begin with question (1). Since we have more data to vary for

this problem, we get much sharper restrictions.

Evaluating (2.18) at t = 0 and using (2.3) we obtain

(6.1) N s ( ) ( ) ( , '1 , '1 )

which is a compatibility condition for initial data (cf. (2.22)).

If (2.20) is to generate an ordinary differential equation for

w(l,.), then wa(1,t) and wst(1,t) must be functions of

w(1,t) and wt(1,t). Indeed, if the order of the equation Is not

to exceed 2, then this dependence must have the form

(6.2a) ws(1,t) = J(w(1,t),t),

(6.2b) wSt (1,t) - j w(W( ,t),t)w t(1,t) + j ( w(l,t),t)

23
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where

(6. 2c) ( , ) [0 ) - (w, r) - (w, )

is a function to be determined. Let us set

(6.3) 0 a W (1), .13

By letting t--.O in (6.2ab) we obtain (

(6.4) W (1) = j(a,0)P, (i) = J (a,)3 + i((a,0).

Now we substitute (6.4) into (6.1), solve it for r'(s), integrate

the resulting equation with respect to s from 0 to 1, and

use (2.19) to obtain

1

(6.5) .3 = J Z(s,w'(s),N(l,j(a,0),jw(a,0)3 + j (a,0)))ds.
0

(Using (6.5) we do not have to worry about how V' is determined

from (6.1).) Equation (6.5) must hold identically for all suffi-

ciently smooth functions satisfying (.)(0) = 0 and .)' > -1

and for all real numbers 3. Thus the Gateaux differential (first

variation) of the right side of (6.5) with respect to - in the

direction n must vanish for all n with n(0) = 0:

0 (Zy?'(s)+ Zn[N jw(a,O)
(6.6) 0

+ NI (J (a,0)8 + j (a))] (1))ds.
z wwK

Here and below we understand the arguments of Z to be those

Ishown in (6.5) and we use N , N ... to stand for the values of
y

N,Ny .... at the arguments of N shown in (6.5). By the funda-

mental lemma of the Calculus of Variations, we obtain from (E.6)

that
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(6.7) Zy (s,.'(s),N ) = Zy (1,'(1),N 1), V c.',,'3,s.

(The fundamental Jem.ma also produces a natural bcndary cc2:.r 

from (6.6).) The differentiation of (6.5) with respect to

yields

(6.8) 1 = ZndS]Njwla,O), V w',a,,.

Conditions (2.10) and (2.12) then imply that j w(a,O) is every-

where positive. It follows that j w(a,O)? and therefore N I

range over (-w,w) as a ranges over ( Thus (6.7) implies

that

(6.9) Z y(s, '(s) ,n) = Z ( , '(1),n), V s,Y',n.

Since (.'(s) is arbitrary in (-1,w) and since s is arbitrary

in [0,1], we conclude from (6.9) that

(6.10) Zy (x,y,n) = Zy ( 1 (1),n), V (x,y,n) L '0 , 1 1- , ) (-<,w).

(Applying this condition to (5.1) we immediately obtain that q/p

= constant, in complete agreement with the findings of Section 5.)

But condition (2.17) implies that (6.10) cannot hold. Hence, our

answer to question (i) is that there are no materials satisfy inng

(2.10) - (2.12) for which the reduced problem for the tip mass is

governed by an ordinary differential equation for all initial data.

We now turn to question (ii). We assume that N(x,0,0) - 0.

We begin by studying (2.18) - (2.21) subject to small initial data

of the form

(6.11) w(s,0) = 17,l (s), wt(1,0} = ,,1(1)

where ri is a real number small in absolute value. As in Section

4 we can use standard results from the theory of ordinary differ-
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ential equations to show that (2.18) - (2.20), (6.11) have a solu-

tion of the form

.6.12) w(s,t;,i ) = rr (s,t) (1,/ 2!)w (s,t) + ...

We get the equations satisfied by wr by substituting (6.12) into

(2.18) - (2.20), (6.11), differentiating these equations r times

with respect to 7, and then setting n = 0.

Let us set N y(s) = Ny (s,0,0), etc. Then w1  satisfies the

linearization of (2.18), (6.11):

(6.13) Nz(s)wt(st)+N (s)w (s t) = N (1)w I (,t MW(1,t),z ty ' z ill )+ (1 w (s )

1

(6.14) w (s,O) = ( (s).

The analysis of Section 5 shows that w (1,t) has the form
1f

j(w 1(1,t)) if and only if

0
16.15a,b) Ry (SI/N z(s) =  riconst.), (i11(1) = i(l) Nzll)/Nz(S) ds.

In this case we readily find that
s

(6.16a,b) w1 (s,t) = 2 (s)wI (1,t), w1(s,t) = w1(1,t)J 1( )d ,
0

N (1)/N (s)

(6.16c) V(s) a I
fo [R zl(1/R zl(tlldt

Now w2 satisfies
S

N ertw2( ,t)l + ert (Y )W( I Qt)
2

Lz L it IY yy s

(6. 17a) + 2N )w ,t)wt(r 't)

+ N 01)w 2(i 1- =s =st 2j) 0,
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(6.17b) w 2 (s,O) = 0.

Treating (6.17) in a manner just like that of Sectfon 5, , fiz:

21that w (1,t) depends only on w2(lt) and w (lt) (without

history terms or nonautonomous terms) if and only if

1

.f fr (S)Y(s)2 - yy (1)2]W1 (1 2

0

(6.18) + 2 (s)?ls)2 - (1) 2 wl ,t)w ,t )

+ [R Wr(s)- Nzz(1)r(1)2]wl(,t)2 ds = 0.

We let t---+O in (6.18). Since w1(1) and V1(1) are indepen-

dent, we obtain from (6.19) that

(6.19) Nyy(S)(s)2 , Nyz(S)r(s)2, izz(S)T(s)2 are constants.

Equations (6.15) and (6.19) are two sets of necessary conditions

for the reduced problem for the tip mass to be governed by an

ordinary differential equation. It is clear how to continue this

procedure ad infinitum.

An alternative global approach to problem (ii) based upon the

formalism developed for problem (i) illuminates some of the issues

involved, and it can directly produce the relationship between

w (1,t) and w(l,t). In this method we replace (6.2a) with
S!

(6.20) w (1,t) - J(w(l,t)), J(0) - 0

because we require the resulting form of (2.20) to be autonomous.

The second equation of (6.20) is consistent with the requirement

that N(x,0,0) = 0. We adopt (6.3) and allow ' to depend upon

0:
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(6.21) 6)' =

Then (6.5) reduces tc

(6.22) !3 Z Va, 3.

This equation restricts the functions Z(.,y,n),x, and J. If we (

set 8 - 0 in (6.22), then we can use (2.10), (2,11), (2.15) to

solve the resulting equation for j in terms of a and t(.,a).

We can get alternative representations for J. Differentiat-

ing (6.22) with respect to 3 we obtain

(6.23) J_(a) = Z a,/3.

Here the arguments of Nz and Zn are those of N and Z in

(6.22). We adhere to this same convention below. Equation (6.23)

(or (6.22)) may be regarded as an ordinary differential equation

for j parametrized by t,Z. The right side of (6.23) Is inde-

pendent of 3, so we could set .3 = 0 there for the purpose of

determining j. Conditions (2.12), (2.15) imply that J'(',) > 0.

Thus J'(a)3 ranges over - with 13. It follows that (6.22)

.is equivalent to

(6.24) Z M J'(a)J Z(sax(sa),N(1,J(a),z))ds, V a,z

0

and to
1

(6.25) Z(1,J(a),n) = J'(a) Z(s,aa(s,a),n)ds, V a,n
0

by the remarks leading to (2.13). The substitution of (6.23) into

(6.25) yields
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Z(s,O..T(s,a),n)ds

(6.26) Z( I, (r)n) 0.z , j (.,) , N(: , j (u ) , 0)) )
, ZN((S (s,, ) , N(. 1 . 1 1

This equation would be an identity if Z 0, J(a) a, "(s.a)

1. Thus this equation suggests how x must compensate, if pos-

sible, for nonuniformity of material response. We get a collec-

tion of necessary conditions for Z(.,y,n) and r to satisfy any

version of (6.22) by differentiating it repeatly with respect to .

a and '3 (or equivalent variables) and then setting a = 0 and

3 equal to any convenient value. In this process we can generate

a power series for j and we recover results like (6.15) - (6.19).

4
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7. Comments

We could easily treat problems in which the parameter

appears elsewhere, provided its vanishing does riot cozrtri'- ,- -

further reduction of the order of the system. But our methods

cannot handle the important problem in which the modulus of

viscosity Nz would go to zero with the parameter c. We could,

however, treat problems in which the spring is slightly nonuniform,

with c also serving as a measure of nonuniformity. In this case,

the reduced problem would be that for a uniform spring. (We would

thereby lose at this level the interesting phenomena of hysteresis

generated by nonuniformity.) Of course, to treat small nonuniform-

ity in a truly satisfactory manner, we should properly character-

Ize It by an independent parameter, and then study the asymptotic

behavior of solutions on different regions of the neighborhood of

the origin In the plane of these two parameters.

Our entire formal theory can be carried out if (2.8) is

replaced by a constitutive equation in which n(s,t) depends upon

the history of w s(s,) up to time t. The study of the reduced

problem, which devolves on the analysis of (2.20), can be conducted

as in Section 4. In particular, if the spring is uniform, then

(2.20) for such materials reduces to

(7.1) N(w (s,.)) - N(w (1,.)),

which admits a solution in the form w s(s,t) - w (1,t). The

treatment of such solutions is Identical to that given in Sections

3 and 4. The difficulty with materials with memory is that if the

constitutive equation lacks a term like that of (2.8) satisfying

(2.12), then we cannot call upon the theory of parabolic equations
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to justify the expansions for the full problem in [1]. There is a

small but illuminating mathematical thecry of cne-dimensional

n:--"'1M5 for maztt I, &.Islz~ !i rc : (cf. Feriard-i, Hi-us a,& a .cI -

for references) that indicates the sort of difficulties we could

expect to encounter. For many such materials there is a threshold

such that if initial data are smaller than this threshold, then

the solution is well-behaved for all time, whereas if the initial

data exceed this threshold, then the solution blows up in finite

time (i.e., the body suffers a shock). Thus we could surmise that

an extension of the results of Section 4 and of [1 ] to such mate-

rials would require at the least some restrictions on the size of

initial data. (Hrusa & Renardy [6] have studied a class of mate-

rials with memory that comes closer to capturing the strong dissi-

pative mechanism of (2.8), (2.12) than those just described.)

Many rheological theories describing materials with memory

are based on the modelling of behavior on the molecular level with

systems of springs and dashpots. It is interesting to examine the

discrete model in order to discern in microcosm some of the diffi-

culties we have faced.

For simplicity we examine the linear system with just two

degrees of freedom shown in Figure 7.2. k and Z denote spring

constants, b and c denote damping constants, and cm and m

denote masses. Let x and w denote the displacements from the

rest positions of the masses cm and m. Then the equations of

motion of this system are

(7.3) mx + (b+c)x - ew + (k+)x - 4w = 0,

(7.4) mw + C(w-x) + (w-x)= 0,
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the superposed dots denoting time derivatives.

/C

iA

oooo X ooor77

Figure 7.2

For r = 0, (7.3) reduces to

(75 L r rk+Ci) 1I rk+t .0 d
(75) Lx(t) exp LtScji -j bCJ exp - EJt at[w(x)evp t ~

which is analogous to (5.3). The solution of this equation for

x(t) in terms of w(t) is elementary. If k/b - I/c, which

corresponds to the constancy of r, the equation for w obtained

by substituting the representation for x obtained from(7.5) into

(7.4) Is a second-order ordinary differential equation. Otherwise,

it is a second order functional-differential equation, its memory

term reflecting the equivalence of this equation to the third-order

system (7.3), (7.4) of ordinary differential equations for .= .
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(In the problems treated in Sections 4 - 6, we reduced a partial

differential equationi, essentially equivalent to an infinite s---

ten cf crdihar, differenitial eqnations, to a single secor,---:>._:

ordinary (functional-) differential equation.) Note the simplifi-

cations that follow from (7.3), (7.4) when b = 0 - c; these are

analogous to the results of Section 3. The full asymptotic analy-

sis of (7.3), (7.4), or of a corresponding system with many degrees

of freedom, would follow directly from the asymptotic theory of

ordinary differential equations.

These results and those of Sections 4 - 6 raise the following

question: Suppose we are given some initial conditions and solu-

tions of an evolution equation in finite-dimensional space. When

can we tell whether the equation is an ordinary differential equa-

tion of some fixed order? Equivalently, we are given the input

and output of a black box. How can we tell whether the dynamics

of the black box is governed by ordinary differential equations?

The occurrence of memory effects in elastic wave propagation

in nonhomogeneous media is well known (cf. Chen & Gurtin [2], Reiss

[7]). The nonhomogeneities reflect signals before they reach the

boundaries. These reflections contribute to an effective memory

term, the effect being pronounced in composite materials (as Chen

-& Gurtin show). For our problem, memory effects are not manifested

In elastic springs, but only In springs with viscous dissipation.

In 1911, Timoshenko (cf. [9, Section 4.9]) developed a simple

technique to account for the mass of a linear spring. Our results

show how much richer the theory becomes when viscosity and nonlin-

earity are allowed to intervene.
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